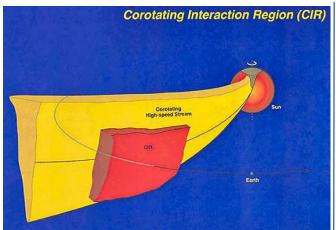
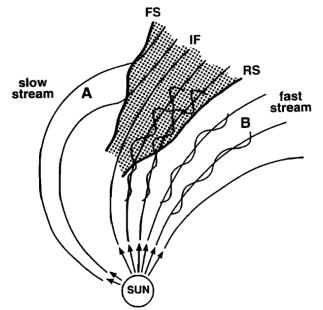


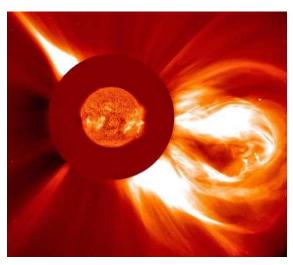
The ionospheric response to CME- and CIR-driven storms

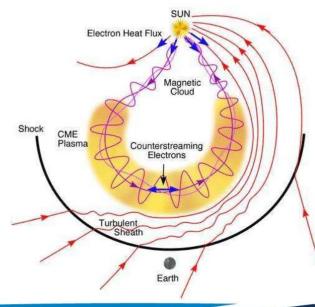
T.M. Matamba and J.B. Habarulema


15 August 2018

Hermanus,7200

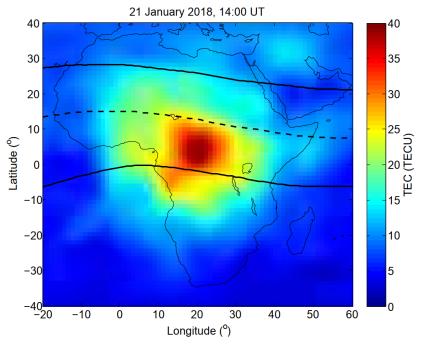



Graphical representation of CIR and CME

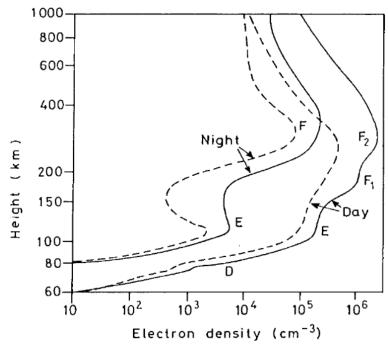

Credit: Tsurutani et al., 2006

Credit: Kamide et al.,1998

Credit: NASA

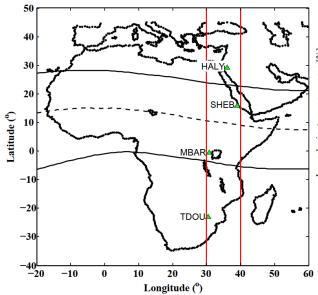


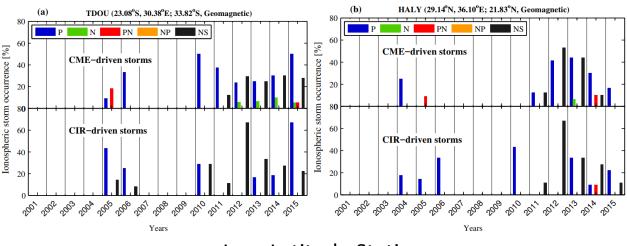
- CIR-driven storms
 are generally weak
 (-50 nT < Dst < -25
 nT) to moderate (100 nT < Dst < -50
 nT) in intensity.
- CME-driven storms are often associated with the intense (Dst < -100 nT) geomagnetic storms.
- CIR-driven storms have long recovery phase as compared to CME-driven storms.

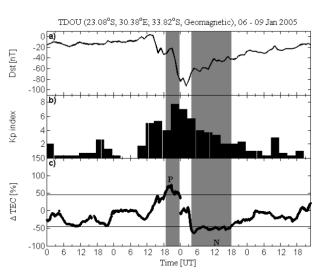

Credit: Richardson and Cane, 2010

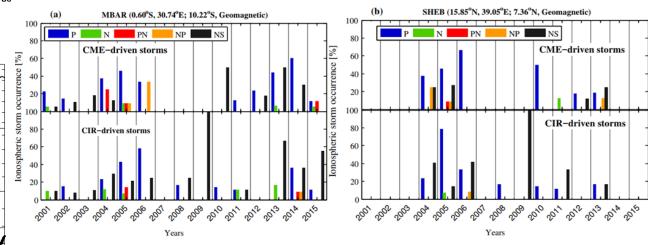
Ionospheric Response

IONEX data from ftp://cddis.gsfc.nasa.gov/gnss/products/ionex/2018/




Credit: Hunsucker and Hargreaves, 2003




Mid-Latitude stations

Low-Latitude Stations

Matamba and Habarulema, 2018

Mid Latitude Stations

		Ionospheric storm effects (%)									
GNNS Location	Geom. Lat	CME-driven storms					CIR-driven storms				
		Р	N	PN	NP	NS	Р	N	PN	NP	NS
TDOU, South Africa	33.82°S	35.3	7.8	5.9	0	51.0	57.1	0	0	0	42.9
HALY, Saudi Arabia	$21.83^{\circ}N$	52.3	2.3	4.5	0	40.9	63.0	0	3.7	0	33.3

Low Latitude Stations

		Ionospheric storm effects (%)									
GNNS Location	Geom. Lat		CIR-driven storms								
		Р	N	PN	NP	NS	Р	N	PN	NP	NS
MBAR, Uganda	10.22°S	52.86	5.71	7.14	2.86	31.43	38.36	8.22	4.11	1.37	47.95
SHEB, Eritrea	7.36°N	48.57	2.86	2.86	14.29	31.43	53.33	2.22	0	2.22	42.22

Reference: Matamba, T. M., & Habarulema, J. B. (2018). Ionospheric responses to CME-and CIR-driven geomagnetic storms along 30°E–40°E over the African sector from 2001 to 2015. *Space Weather*, 16, 538–556. https://doi.org/10.1029/2017SW001754

Thank You