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Methods of scaling Whistlers
in the Absence of the
Initiating Sferic

and Nose Frequency

Four methods of scaling whistler sonagrams in the absence of
initiating sferic and nose are compared. It is concluded that, while
all give acceptable results, the method of Ho & Bernard (1973) is
most economical of computer time and scaling time.

Introduction

Whistler sonagrams are commonly used in order to obtain
information about the electron density in the plasma-
sphere (Helliwell, 1965). If a suitable model is assumed, a
knowledge of the nose frequency and position of the
initiating sferic for each whistler trace allows the L value
of the duct in which the whistler has propagated, and the
electron density distribution in the duct to be deduced
(Park, 1972). Frequently both initiating sferic and nose
are absent on the trace and recently there has been great
interest in curve-fitting techniques for deducing the posi-
tion of the sferic and the nose frequency (Rycroft &
Mathur, 1973; Ho & Bernard. 1973). These are based on
one of two fitting formulae (Dowden & Allcock, 1971:
Bernard, 1973).

In this paper four methods of deducing the nose fre-
quency and sferic position are discussed and compared.
The methods are tested on synthetic data computed from a
model plasmasphere. All methods give similar results and
the choice of method is a matter of convenience. It is
concluded that the most economical of computer time and
manpower is that of Ho & Bernard (1973) with a
modification which makes more efficient use of the data
available. This method is now in use for scaling data from
Sanae. Antarctica.

The whistler group delay and
plasmasphere models
Whistlers which have travelled in ducts in the plasma-
sphere have a time delay which is frequency dependent.
The expression for the delay, 7, is (Helliwell, 1965,
p. 182)

r = 2¢ f-l./'2 I
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where f is the wave frequency, f the plasma frequency, f,,
the electron gyrofrequency and ¢ the free space speed of
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Vier metodes om sonagramme van fluiters in afwesigheid van
inisiérende sferieksteuring en neusfrekwensie te skaleer, word
vergelyk. Alhoewel met al die metodes aanvaarbare resultate
verkry word, blyk die metode van Ho & Bernard (1973) wat re-
kenaartyd en skaleertyd betref die voordeligste te wees.

light. The integral is taken along the path, with ds the
element of path length. The quantities f, and f,, are func-
tions of s. The dispersion D = 7 \'f, is a parameter
frequently used.

In standard methods of data reduction approximations
are made to this law and whistler traces are analysed on the
basis of assumed models. It is normally assumed that the
earth’s magnetic field is that of a centred dipole and that
the plasmasphere is in ambipolar diffusive equilibrium,
with ions and electrons constrained to move along the
magnetic field lines (Angerami & Thomas, 1964).

In this paper synthetic whistlers have been computed
from equation (1) by evaluating the integral using
Simpson's rule. These have then been scaled by different
techniques, and the results compared. The model used
was that of Rycroft & Alexander (1969) for winter night.
It is a diffusive equilibrium model which is representative
of average conditions in the plasmasphere. It is assumed
that a duct exists at intervals of 0.5 in L between L = 2,5
and L = 6. Some of the resulting synthetic whistlers are
shown in Fig. 1 and may be compared with a typical
sonagram from Sanae shown in Fig. 2.

Fitting formulae for the whistler group
delay
The formula of Dowden & Allcock

On empirical grounds Dowden & Allcock (1971) have
proposed that Q. the reciprocal of the dispersion, is linear
in f. This leads to an expression for delay of the form
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Q(=(r— 10) V/T) = Dl— (1 — f/afn) (3
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Here D, is the zero order dispersion (Storey 1953), Tothe

position of the initiating sferic and f, the nose frequency
or frequency of minimum delay. This occurs where
dr/df =0 which condition gives

a=3.

On statistical grounds, by scaling real data, Dowden
and Allcock obtained a value @ = 3.1 + 0,04. The slightly
higher value for ¢ can be regarded as a correction for
non-linearity of Q(f), averaged for the conditions which
they were considering.

Itis of interest to investigate the theoretical reason for
the excellent fit to experimental data of equation (2).
Storey (1957) has expanded the integral in equation (1) in
powers of f to give for the dispersion an expression of the
form

D = Qo) f (Ex/fsd) {1 — (312) (i) +
(15/8) (f/fu)? —|—1. ..} ds .
= Q@) { [ (O5/f) ds — (31)2) [ (Fx/fu’ ds)+
(15¢2/8) | (fN,ffH%) ds 4 ...}
= ) {lo — (3/2) I, (f/fum) +
(15/8) 1, (F/fme)® + . . .} @)

where £, is the gyrofrequency on the path at the equator,
and I, 1, and I, are given in the appendix.

For f<<f;; this approximation is very good but for values
of f~f;, many terms are needed. The expression (3), how-
ever, is an excellent approximation over a wide range of
frequencies. The reason for this can be seen if we regard
fi/f,, /2 as a weighting function and express I, and I, in
terms of I, and weighted values of 1/f,, and 1/f, 2

|
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If equation (4) is inverted we get
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Fig. 1. Synthetic whistlers computed in a model ionosphere

(Rycroft and Alexander model 4). The parameter beside cach
curve is the value of L.

small compared with unity and with 31,/21.

We thus see that there is a good reason for the fact that
the Dowden and Allcock formula is a good approximation
to the whistler dispersion law.

Bernard’s formula
Bernard (1973) has suggested a formula of the form

fag — Af
D= Mgy ©

where D, is the zero order dispersion and

B .. 34— -
fHo = fnJ{An. A= m» An - fnffIlE.

This he justifies theoretically and it provides a good fit
over a wide range of parameters.

Techniques of whistler analysis

In all the techniques of this section it is assumed that
initiating sferic and nose are both absent.

Method of Ho & Bernard (1973) (Method 1)

Here Bernard’s fitting formula (6) is used. A value is
assumed for An and A. The time delay referred to an

1817 — 15L1, (ff_ )2 o] Table 1
815 A
18 I,— 1511
_ 2 ’l 4 %(i> P n 3 [6<L)2 B L 31,/21, 15 1,/81, —ls_r!‘“u

o 2\fu/ fae ~ 8 LT\ s 1,080 0.996 0.171
1 i 2,0 0,874 0.746 0.017
5<—>](f—) +on ) () 25 0.798 0.677 ~0.040
£3./~ R 3.0 0.767 0.654 -0,065
3.5 0,755 0.648 =0,077
e I\ | 4.0 0,752 0.649 —0,083
The quantities <]I“£> aﬂd<—2> 4.5 0,753 0.652 ~0,085
fa 5.0 0,756 0,657 ~0,085
are positive and do not differ very much in magnitude for all 5.5 0.760 0,662 —0,085
reasonable distributions so that the coefficient of the term in 6,0 0,764 0,667 ~0,084
(f/f,)* is very small in equation (5). This is not the case in 6,5 0,768 0.673 0,082
equation (4). In the appendix some computations of the size ;2 g;;?; gggf :gggg
of the coefficients 8.0 0.780 0,686 ~0,077
18 If = 15 L1, 151, 8.5 0,784 0.690 =0,075
——— = and Rl 9.0 0,787 0.694 -0,074
813 2 9.5 0,790 0,697 =0,072
are presented for a typical model. These show it to be very 109 /L il —0.0N
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Fig. 2. Typical whistler sonagram from Sanae.

arbitrary origin is then
D,
V{1 — £/3,1 fa}

Here 7, is the unknown sferic position. Thus there are
three unknown parameters, D, f,,. and 7,. Method 1
requires the measurement of three experimental pairs of
values, (7.f). The three equations are solved to give the
three unknown parameters and hence 7, and f;.

Method of Rycroft & Mathur (1973) (Method 2)

In this method fitting formula (2) is used. A position is
assumed for the sferic and from a set of n data points (7;,
f.). With the assumption that 7, is zero, a linear least
squares fit to equation (3) is made. The process is repeated
for various sferic positions and that value of 7, which
minimizes the standard error of the gradient selected.

Method 3

This previously unpublished method uses equation (2)
directly. This involves a non-linear least squares fit. The
quantity to be minimized is

n 1 I:)n )'.’

T =1 +

151 ATWTYR T =051

where there are n pairs of data points (7;. f,). This can be
regarded as a surface in the parameter space {7, D,. f.}.
Standard techniques for a numerical search for the minima
of this function exist (Bevingron, 1969). These are used to
give values for the parameters that fit best and for an
estimate of the error in each parameter. For a multiple-
path whistler, where there are many traces arising from a
single lightning flash, a significant improvement can be
made by taking note of the fact that the sferic position is
the same for each trace. The value of 7, is obtained
independently for each trace together with its standard
deviation. A weighted mean value is then found for 7, and
the record rescaled using a linear fit of the data to equation
(3).

Method 4

This is an extended version of method 1. For each trace in
a multi-path whistler a value of 7, is obtained by method
1. Unlike method 3 there is no estimate of the standard
deviation. It can. however, be assumed that the fractional
error is the same in each case. This leads to the assumption
that the absolute error in 7, is proportional to the value of

- - Sanaé 10vii73. - -
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the delay at the nose. A mean value of 7, is found with

weights proportional to 7 * and the data rescaled by
Bernard's (1973) method. This is a more efficient use of
the data than in the original method of Ho & Bernard
(1973).

Results and conclusions

The methods described above have been applied to find
the nose frequency and sferic position for each of the
synthetic whistlers of Figure 1. Some results are shown in
Table 2. It will be noted that all give consistent and
satisfactory results here and this appears generally to be
the case. Although in this particular example the sferic
position obtained by method 4 does not appear as good as
that obtained by other methods, the reverse is true in other
examples, and there is no clear advantage for any of the
methods on the grounds of accuracy alone. A decision on
suitability can thus be made on grounds of convenience.
The following general statements can be made:

(i) Method 1 (and hence method 4) requires relatively
little scaling time. Only three points need be read
from each trace as compared with 10 to 20 for
methods 2 and 3.

(i1) Method 2 (and method 4) require substantially less
computer time. Method 3 is very expensive on com-
puter time.

(i) Method 3 gives an estimate of the statistical error
involved in the scaling and is the only one which does
so. This error turns out to be much smaller than the
estimated systematic errors due to the assumption of
particular parameters for the model (Park, 1972). It
thus does not seem worthwhile for routine analysis.

(iv) All methods appear to give consistent results when

applied to real data from Sanae.

Method 4, unlike method I, uses the extra informa-

tion available through the knowledge that the sferic

position is the same for each trace of a multi-path
whistler.

We conclude therefore, that the best method for routine

analysis is method 4 (modified from Ho & Bernard,

1973). This method is now being applied in this labora-

tory for routine analysis of whistlers.

—

(v



30 Suid-Afrikaanse Tydskrif vir Antarktiese Navorsing, No. 4, 1974
Table 2
Comparison of the nose frequency and sferic position computed by each of the methods in this paper. The
actual sferic position is -0.5 s.
Nose frequency (kHz) Sferic Position
L Actual Method Method
1 2 3 4 1 2 3 4

2.5 20,5 17,2 7 15,5 172 -0,51 -0,55

3,0 12,0 10,7 11,8 11,0 112 -0,54 =0;51

3.5 7.6 7,6 7.4 7.4 7.4 -0.45 -0,56 -0,55 -0,37

4.0 5.1 s 4.9 5,0 5.1 -0.39 -0.,65 +0,01 +0.06

4,5 3,6 3.6 3.4 3.5 3.6 =0:21 -0.86

54 2,6 2,6 2,5 2.5 2.6 -0,10 “T22
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If we adopt a typical diffusive equilibrium model for the
plasma frequency, and dipole field variation for the gyro-
frequency, then we may write

fx = fyu e2,5/Lcos H
and
fa = fugr (4 — 3 cos? 6)1/2/L3cos® §

where f,, and f,, are the values of f and f,, at the magnetic
equator on the field line defined by L.
Then, noting that
ds 5
R et = [/ 1;’2,
T al (4 — 3 cos?® )
the quantities 1, I,. I, in equation 5 may be written

I, =fyxga If’cos“f? (4 — 3 cos2f)U/4
exp (2,5/L cos?d) df

I, =fyza j’f cos8(4 — 3 cos?f)-1/4
exp (2,5/L cos®*@) dé

I, = fxna f7 cost®(d — 3 cost)5/s
exp (2,5/L cos®d) d@

where cos A" = 1,07/11/2 and A’ is the latitude where
the field line reaches an altitude of 1000 km. These
have been evaluated by Simpson’s rule and the quanti-
ties 3I,/2lo, and (1817 — 15 I,l,)/8 I§ are shown in
Table 1. It will be observed that in the Storey expansion
the coefficients of the first and second order terms are of
order unity while for the Dowden and Allcock expansion
the second order coefficient is about 0,1 of the first order
coefficient., Of course this calculation omits the contribu-
tion of the ionosphere below | 000 km to the dispersion.
This is usually handled by using a simple correcting term
such as that due to Park (1972).

A condition for the whistler to be ducted is that f <
Y2 £, (Smith, 1961), thus the maximum size of the second
order term in the Dowden and Allcock expansion is 0,25
of the coefficient i.e. a maximum error of only 2% is
introduced over a very wide range of L values if this term
is ignored. For the Storey expansion this maximum error
is of the order of 20%. If we take the nose frequency as
being typically 0,3f,, we see that the error at the nose is
0,8%.
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