

The sub-Antarctic Islands (SAIs)

Positioned around the Antarctic Polar front.

Distinct glacial histories, and highly variable biomes.

Very remote and inaccessible.

Unique local ecology.

Studies mainly focused on SAIs with stations:

- Prince Edward (Marion) (RSA)
- South Georgia (UK)
- Very few studies (culture-based) on the microecology of SAIs.

The ACE program

- The Antarctic Circumnavigation Expedition (ACE) was conceived as an inter-disciplinary effort to study the Southern Ocean and sub-Antarctic islands around Antarctica.
- The ACE was launched from Cape town in December 2016 in the research/logistics vessel Akademik Tryoshnikov.
- Projects developed in this initiative included:
 - Mapping changes in phytoplankton abundance in the Southern Ocean.
 - Study of the aerobiology over Antarctica.
 - Testing the diversity of marine refugia at sub-Antarctic Islands
 - Documenting the functional biogeography of the sub-Antarctic

Aim of the study

The micro-ecological survey of the sub-Antarctic Islands surrounding the Antarctic continent.

Objectives

- To document the biodiversity and functional potential of soil microbiomes from sub-Antarctic islands.
- Identify possible drivers of community specialization in sub-Antarctic islands.

Methodology

Sample sites

- Maritime/Continental Islands:
 - Peter I (1 sample)
 - Siple (7 samples)
 - Lauff (2 samples)
 - Maher (2 samples)
 - Scott (6 samples)
- SAIs in sub-Antarctic Zone:
 - Bartolomé (2 samples)
 - Possession (3 samples)
 - Marion (1 sample)
 - Kerguelen (2 samples)
 - South Georgia (5 samples)
- Transition island:
 - Bouvetøya (4 samples)
- Uneven sampling set.

The soil chemistry and climate of Antarctic islands

- Islands are distinct in terms of soil chemistry and climate.
- Islands also clusters according to biogeographical regions.
- Higher concentrations of calcium and nitrates might be associated with mineral aerosol deposition or calcium carbonate accumulation in coastal Antarctica.

Localized microbial communities

- Samples cluster significantly according to islands.
- Island soil fungal communities not as clearly separated according to sub-Antarctic and Maritime/Continental regions.
- High percentage of unknown prokaryotic taxa in Siple/Maher/Lauff.

Abiotic drivers of island microbial communities

0.012

0.022

0.045

0.008

Soil Chemistry

0.114

Distance

Climate

Residuals = 0.756

0.039

- Latitude and temperature are the common factors explaining microbial distribution.
- Soil chemistry is the biggest driver of microbial community structure
- Stochastic processes (e.g. ecological drift) might play important roles in shaping microbial distribution.

The functional potential of SAI soils

- 20 metagenome assemblies were obtained from SAI soils.
- High degree of functional redundancy.
- All metagenomes have the potential to perform ecosystem service functions such as carbon fixation and nitrification.
- Based on gene abundances, metagenomes clustered significantly into the two biogeographic regions.

Differentially abundant genes across SAIs

Bouvetøya
Kerguelen
Lauff
Maher
Marion
Peter I
Possession
Scott
Siple
South Georgia

Bartolomé

- **Pathways**
- Carbohydrate metabolism
 Carbon fixation
 Carbon monoxide oxidation
 Hydrogen oxidation
 Methane oxidation
 Nitrogen cycle
 Phosphate scavenging
 Phototrophy
 Stress resistance

Sulfur cycle

- Genes involved in phototrophy and chemotrophy are over-represented in Maritime/Continental islands.
- Genes associated with degradation of complex plant materials are overrepresented in sub-Antarctic islands.
- Evidence of functional selection by the environment.

Novelty in the island microbiomes

- Screening metagenomes for novel genes involved in ecosystem services (eg. RuBisCo; Nife hydrogenases, CO dehydrogenases).
- Several potential novel RuBisCo families.
- New sub-clades within the RuBisCo IE family.
- RuBisCo IE are high affinity CO/CO₂ fixers that use H₂ as energy source.

Legend

Actinobacteria
Proteobacteria
Cyanobacteria
Bacillariophyta
Firmicutes
Chordata
Deinococcus-Thermus
Streptophyta
Rhodophyta
Verrucomicrobia
Chlorophyta
Euglenozoa
Haptista
Chloroflexi

Tree scale: 0.1 ⊢

The picture so far ...

Distance from Antarctica

<u>Acknowledgements</u>

- Prof Don Cowan
- Prof Steven Chown
- Prof Pete Convey

- Dr Adeola Rotimi
- Dr Clément Coclet
- Dr Jason Bosch
- Dr Jenny Johnson
- Dr Max Ortiz
- Dr Gilda Varliero

- The CMEG team
- Collaborators at Monash University
- The ACE team

